Introduction to statistics in R

Rémy Beugnon

https://remybeugnon.netlify.app @BeugnonRemy

Christian Ristok @ChristianRistok

 Malte Jochum
<u>http://maltejochum.de/</u> @MalteJochum

Summary

In this lecture:

- 1. The stepwise process to analyze your data
- 2. Application
- 3. Practical on your own
- 4. Conclusion

In this lecture:

1. The stepwise process to analyze your data

In this lecture:

1. The stepwise process to analyze your data Focus on linear models with continuous predictors.

Check your data structure

1. What are your variables?

- i. What is your response variable?
- ii. What is your explanatory variable?
- 2. How are your data distributed?

3. How do you expect your response variable to be distributed?

In this lecture:

- 1. The stepwise process to analyze your data
- 2. Application

Who to do that using RStudio

You need

- RStudio
- R version 4.0 or higher
- The following packages:
 - Data handling: dplyr
 - Model quality checks: performance (needed with see)
 - Extract your results: ggeffects
 - Plot: ggplot2 (join the course from Steph for more details)
- A dataset to analyze

Tree species richness

Tree species richness

Example: tree diversity effect on litterfall abundance

Tree species richness

Check your data structure

1. What are your variables?

- i. What is your response variable?
- ii. What is your explanatory variable?
- 2. How are your data distributed?

3. How do you expect your response variable to be distributed?

1. load your data in a dataset called df:

File type	R function [package]	Example
.CSV	read.csv(file = 'name.csv')	df = read.csv(file = "my-data.csv")
.txt	read.delim(file = 'name.txt')	df = read.txt(file = "my-data.txt")
.xlsx	read_xlsx(path = 'name.xlsx', sheet = "sheet.name") [package: readxl]	df = read_xlsx(path = "my-data.xlsx", sheet = "rawdata")

1. load your data in a dataset called df:

^	tsp ‡	litterfall 🗘	neigh.sp.rich	
1	1-E34	73.98		1
2	10-G17	21.82		1
3	100-Q21	71.98		2
4	101-Q21	38.18		2
5	102-P26	66.06		2
6	103-P26	35.30		2
7	105-06	22.71		3
8	11-027	123.49		1
9	112-H31	147.98		2
10	113-H31	102.94		2
11	115-T17	292.50		2
12	116-127	15.19		2
13	117-127	22.12		3
14	118-127	37.39		3
15	119-S18	91.97		2

- 1. load your data in a dataset called df
- 2. what are your variables?

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name			
litterfall	Quantity of litter in gram fall on 1 m2			
neigh.sp.rich	Number of species in the surrounding			

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name			
litterfall	Quantity of litter in gram fall on 1 m2			
neigh.sp.rich	Number of species in the surrounding			

str(df)

<pre>> str(df.fall)</pre>			
'data.frame':	180 obs	s. of 3	variables:
\$ TSP	: chr	"1-E34"	"10-G17" "100-Q21" "101-Q21"
\$ litterfall	: num	74 21.8	72 38.2 66.1
<pre>\$ neigh.sp.ric</pre>	n: int	$1\ 1\ 2\ 2$	2 2 3 1 2 2

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name	Character		
litterfall	Quantity of litter in gram fall on 1 m2	Numeric		
neigh.sp.rich	Number of species in the surrounding	Integer		

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name	Character	All sample names	
litterfall	Quantity of litter in gram fall on 1 m2	Numeric	0 – 500 g/m2	
neigh.sp.rich	Number of species in the surrounding	Integer	[1;12]	

- 1. load your data in a dataset called df
- 2. what are your variables?

Variable name	Measure	Туре	Expected range	Expected distribution
TSP	Sample name	Character	All sample names	-
litterfall	Quantity of litter in gram fall on 1 m2	Numeric	0 – 500 g/m2	Normal
neigh.sp.rich	Number of species in the surrounding	Integer	[1;12]	-

DANGER ZONE

Your data are not Normally distributed, your residuals should be!

DANGER ZONE

Your data are not Normally distributed, your residuals should be! Let takes people height as example:

DANGER ZONE

Your data are not Normally distributed, your residuals should be! Let takes people height as example, drinking your soup makes you grow up

DANGER ZONE

Your data are not Normally distributed, your residuals should be! Let takes people height as example, drinking your soup makes you grow up

DANGER ZONE

Height should follow a normal distribution Therefore, your residuals should follow a normal distribution Your population **DOES NOT** follow a normal distribution

(Same goes with other distribution types!)
- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Missing values

WARNING DANGER ZONE

Only keep complete rows: df = df[complete.cases(),]

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?

Quick and dirty

plot(df)

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?

boxplot(df\$litterfall)

neigh.sp.rich

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range:

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range:

df[df\$litterfall<0 | df\$litterfall>500,]

	TSP	litterfall	neigh.sp.rich
170	outliers	1000	50
171	outliers	1000	50
172	outliers	1000	50
173	outliers	1000	50
174	outliers	1000	50
175	outliers	1000	3
176	outliers	1000	3
177	outliers	1000	3
178	outliers	1000	3
179	outliers	1000	3
180	outliers	1000	3

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range:

df[df\$neigh.sp.rich<1 | df\$neigh.sp.rich>12,]

TSP	litterfall	neigh.sp.rich
165 outliers	1	-1
166 outliers	1	-1
167 outliers	1	-1
168 outliers	1	-1
169 outliers	1	-1
170 outliers	1000	50
171 outliers	1000	50
172 outliers	1000	50
173 outliers	1000	50
174 outliers	1000	50

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range
 - 2. Correct if typos or remove

Write the opposite conditional:

df[df\$neigh.sp.rich>=1 & df\$neigh.sp.rich<=12,]</pre>

Leave R to do it for you:

df[!(df\$neigh.sp.rich<1 | df\$neigh.sp.rich>12),]

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range
 - 2. Correct if typos or remove

WARNING DANGER ZONE

You will overwrite your data in r keep a safe copy

df.raw = df

df = df[!(df\$neigh.sp.rich<1 | df\$neigh.sp.rich>12),]
df = df[!(df\$litterfall<0 | df\$litterfall>500),]

- 1. load your data in a data called df
- 2. what are your variables?
- 3. how are your variables distributed?
 - 1. Control data out of range
 - 2. Correct if typos or remove

Litterfall

1. what do you want to test?

Tree species richness

1. what do you want to test?

Tree species richness increase litterfall

1. what do you want to test?

Tree species richness increase litterfall

"litterfall" increase with "neigh.sp.rich"

1. what do you want to test?

Tree species richness increase litterfall "litterfall" increase with "neigh.sp.rich" *litterfall* ~ μ + α × *neigh.sp.rich* + ε H0: α = 0, *litterfall* ~ μ + ε H1: $\alpha \neq$ 0, *litterfall* ~ μ + α × *neigh.sp.rich* + ε

what do you want to test?
take a look at your data: plot(df\$litterfall ~ df\$neigh.sp.rich)

- 1. what do you want to test?
- 2. what distribution will you use? How do you expect your data to fall around your mean

litterfall ~ μ + α ×neigh.sp.rich + ε

- 1. what do you want to test?
- 2. what distribution will you use? How do you expect your data to fall around your mean

litterfall ~ μ + α ×*neigh.sp.rich* + ϵ

 $\varepsilon \hookrightarrow N(0,\sigma)$

- 1. what do you want to test?
- 2. what distribution will you use?
- 3. what are you statistical hypotheses?

- 1. what do you want to test?
- 2. what distribution will you use?
- 3. what are you statistical hypotheses?

- i. Independence
- ii. Random sampling
- iii. Normally distributed error: $\varepsilon \hookrightarrow N(0, \sigma)$
- iv. Equal variances (homoscedasticity)
- v. Linearity
- vi. Predictors are fixed

- 1. what do you want to test?
- 2. what distribution will you use?
- 3. what are you statistical hypotheses? most control by your experiment structure
 - i. Independence
 - ii. Random sampling
 - iii. Normally distributed error: $\varepsilon \hookrightarrow N(0, \sigma)$
 - iv. Equal variances (homoscedasticity)
 - v. Linearity
 - vi. Predictors are fixed

Build your model in R

Build your model in R

1. build your model

1. build your model

Function: lm() (glm() for other residual distribution)

1. build your model

Function: lm() (glm() for other residual distribution)

Formula: $y \sim x$

1. build your model

Function: lm() (glm() for other residual distribution)

Formula: y ~ x

```
Together: lm(formula = litterfall ~ neigh.sp.rich, data = df)
```

2. fit the model to your data:

```
mod = lm(formula = litterfall ~ neigh.sp.rich, data = df)
```


Check the model quality and the assumptions: the **performance** package

Check the model quality and the assumptions: the **performance** package

Check the model quality and the assumptions: the **performance** package

Check the model quality and the assumptions: the **performance** package

Check the model quality and the assumptions: the **performance** package

Check the model quality and the assumptions: the **performance** package

Check the model quality and the assumptions: the **performance** package

Data transformation and outliers

Data transformation and outliers

Check outliers with performance: check_outliers(mod)

Data transformation and outliers

Check outliers with performance: check_outliers(mod) Data transformation: why?

- to make linear non-linear things
- to make normal non-normal distribution
- to make linear non-linear things
- to make normal non-normal distribution

- to make linear non-linear things
- to make normal non-normal distribution

- to make linear non-linear things
- to make normal non-normal distribution

- to make linear non-linear things
- to make normal non-normal distribution

- to make linear non-linear things
- to make normal non-normal distribution

Check outliers with performance: check_outliers(mod) Data transformation:

log-transformation explanatory variable

Check outliers with performance: check_outliers(mod) Data transformation: **log-transformation** explanatory variable Compare the models quality: compare_performance(mod, mod.log)

# Comparison of Model Performance Indices													
Name	I	Mode1	I	AIC	BIC	R2	I	R2	(adj.)	I	RMSE	I	Sigma
mod mod.2	2]m]m		1360.645 1358.819	1369.007 1367.182	0.151 0.164			0.144 0.157		68.403 67.884		68.980 68.457

Check outliers with performance: check_outliers(mod) Data transformation: **log-transformation** explanatory variable Compare the models quality: compare_performance(mod, mod.log)

Check outliers with performance: check_outliers(mod) Data transformation: **log-transformation** explanatory variable Compare the models quality: compare_performance(mod, mod.log)

summary(mod)

litterfall ~ μ + α ×log(*neigh.sp.rich*) + ϵ

	> summary(mod.2)							
	Call: lm(formula = "litterfall ~ log(neigh.sp.rich)", data = df.fall)							
μ	Residuals: Min 1Q Median 3Q Max -118.83 -47.15 -13.37 38.85 213.10							
/	Coefficients:							
α	(Intercept) 50.852 9.339 5.445 2.02e-07 *** log(neigh.sp.rich) 53.960 8.147 6.624 5.61e-10 ***							
	 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
	Residual standard error: 65.01 on 153 degrees of freedom Multiple R-squared: 0.2228, Adjusted R-squared: 0.2178 F-statistic: 43.87 on 1 and 153 DF, p-value: 5.614e-10							

Mean litterfall when diversity null = 50.852 +/- 18.304 g/m2 (Estimate +/- 1.96 x SE) Effect species richness = 53.960 +/- 15.958 g/m2/log(#species)

summary(mod)

Mean litterfall when diversity null = 50.852 +/- 18.304 g/m2 (Estimate +/- 1.96 x SE) Effect species richness = 53.960 +/- 15.958 g/m2/log(#species)

summary(mod)

DANGER ZONE: the factors

lm(formula = litterfall ~ species, data = df)

summary(mod)

DANGER ZONE: the factors

litterfall ~ $\alpha_A \times specie_A + \alpha_B \times specie_B + \alpha_C \times specie_C + \alpha_D \times specie_D + \varepsilon$

*specie*ⁱ is 0 or 1

summary(mod)

DANGER ZONE: the factors

Call: lm(formula = "litterfall ~ specie", data = d.2) Residuals: 1Q Median Min 3Q Max -137.34 -46.82 -10.53 31.08 218.85 Coefficients: Estimate Std. Error t value Pr(>|t|) 10.95 5.367 5.27e-07 *** (Intercept) 58.75 specieB 23.76 15.08 1.576 0.118specieC 88.83 16.42 5.410 4.38e-07 *** specieD 76.77 65.68 1.169 0.245 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 64.76 on 99 degrees of freedom Multiple R-squared: 0.2392, Adjusted R-squared: 0.2162 F-statistic: 10.38 on 3 and 99 DF, p-value: 5.335e-06

 $litterfall \sim \alpha_A \times specie_A + \alpha_B \times specie_B + \alpha_C \times specie_C + \alpha_D \times specie_D + \varepsilon$

summary(mod)

DANGER ZONE: the factors

<i>α</i> .	Call: lm(formula = "lit	terfall ~ speci	e", data = d.2)	
u _A	Residuals: Min 1Q -137.34 -46.82	Median 3Q -10.53 31.08	Max 218.85	
	Coefficients:			
	Estim	nate Std. Error	<u>t value Pr(> t)</u>	
	(Intercept) 58	3.75 10.95	5.367 5.27e-07	***
$\alpha_B - \alpha_A$	specieB 23	3.76 15.08	1.576 0.118	
	specieC 88	3.83 16.42	5.410 4.38e-07	***
	specieD 76	5 77 65 68	1 169 0 245	
		, 05.00	1.105 0.215	
$\alpha_{C} - \alpha_{A}$	Signif. codes: 0) '***' 0.001 '*	*' 0.01'*' 0.05	·.' 0.1 ' ' 1
$\alpha_D - \alpha_A$	Residual standard Multiple R-square F-statistic: 10.3	l error: 64.76 o ed: 0.2392, 88 on 3 and 99 D	on 99 degrees of Adjusted R-squar OF, p-value: 5.3	freedom ed: 0.2162 35e-06

 $litterfall \sim \alpha_A \times specie_A + \alpha_B \times specie_B + \alpha_C \times specie_C + \alpha_D \times specie_D + \varepsilon$

If you like to test the differences between the different factors you need to do an ANOVA and a Tukey test

summary(mod)

DANGER ZONE: the factors

If you like to test the differences between the different factors you need to do an ANOVA and a Tukey test

```
mod = lm(formula = litterfall ~ species, data = df)
mod.aov = aov(mod)
TukeyHSD(mod.aov)
```

Tukey multiple comparisons of means 95% family-wise confidence level								
Fit: aov(formula = .)								
\$spe	cie							
	diff	lwr	upr	p adj				
B-A	23.76082	-15.64056	63.1622	0.3970308				
C-A	88.83229	45.92617	131.7384	0.0000026				
D-A	76.76800	-94.85645	248.3924	0.6477987				
C-B	65.07147	23.15468	106.9883	0.0005684				
D-B	53.00718	-118.37262	224.3870	0.8504196				
D-C	-12.06429	-184.28362	160.1551	0.9978085				

summary(mod)

litterfall ~ μ + α ×log(*neigh.sp.rich*) + ε

> summary(mod.2)							
Call: lm(formula = "litterfall ~ log(neigh.sp.rich)", data = df.fall)							
Residuals: Min 1Q Median 3Q Max -118.83 -47.15 -13.37 38.85 213.10							
Coefficients: Estimate Std Error t value Pr(> t)							
(Intercept) 50.852 9.339 5.445 2.02e-07 *** log(neigh.sp.rich) 53.960 8.147 6.624 5.61e-10 *** Signif codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 ' ' 0.1 ' ' 1							
Residual standard error: 65.01 on 153 degrees of freedom Multiple R-squared: 0.2228, Adjusted R-squared: 0.2178 F-statistic: 43.87 on 1 and 153 DF, p-value: 5.614e-10							

summary(mod)

Extract the coefficients: summary(mod)\$coefficients

<pre>> summary(mod.2)\$coefficients</pre>								
	Estimate	Std. Error	t value	Pr(> t)				
(Intercept)	50.85248	9.338548	5.445437	2.017066e-07				
<pre>log(neigh.sp.rich)</pre>	53.95982	8.146519	6.623666	5.613835e-10				

To extract the predictions from your models: ggeffect package pred = ggpredict(model = mod, terms = 'neigh.sp.rich')

# #	Pi X	redicted va = neigh.sp	alı).	ues of li [.] rich	tterfall
x	I	Predicted	I		95% CI
1	I	50.85	I	[32.55.	69.16]
2	İ	88.25	Ì	[77.23,	99.28]
3	Ì	110.13	Ì	[99.63,	120.64]
4	Ι	125.66	I	[113.28,	138.03]
5	Ι	137.70	I	[123.02,	152.38]
6	T	147.54	I	[130.65,	164.42]
7		155.85		[136.95,	174.76]
8		163.06	I	[142.33,	183.79]

In this lecture:

- 1. The stepwise process to analyses your data
- 2. Application on an example with R
- 3. Practical on your own

Your time to play

