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Microbial respiration is critical for soil carbon balance and ecosystem functioning. Previous studies suggest that plant diversity
influences soil microbial communities and their respiration. Yet, the linkages between tree diversity, microbial biomass, microbial
diversity, and microbial functioning have rarely been explored. In this study, we measured two microbial functions (microbial
physiological potential, and microbial respiration), together with microbial biomass, microbial taxonomic and functional profiles,
and soil chemical properties in a tree diversity experiment in South China, to disentangle how tree diversity affects microbial
respiration through the modifications of the microbial community. Our analyses show a significant positive effect of tree diversity
on microbial biomass (+25% from monocultures to 24-species plots), bacterial diversity (+12%), and physiological potential
(+12%). In addition, microbial biomass and physiological potential, but not microbial diversity, were identified as the key drivers of
microbial respiration. Although soil chemical properties strongly modulated soil microbial community, tree diversity increased soil
microbial respiration by increasing microbial biomass rather than changing microbial taxonomic or functional diversity. Overall, our
findings suggest a prevalence of microbial biomass over diversity in controlling soil carbon dynamics.
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INTRODUCTION
A thorough understanding of the soil carbon balance is essential
to mitigate recent increases in atmospheric carbon concentrations
and the resulting climate change [1–4]. Soil heterotrophic
respiration is a critical process for the soil carbon balance and
ecosystem functions such as climate regulation, nutrient cycling,
and plant productivity [5, 6]. Microorganisms are the main
contributors to soil heterotrophic respiration, and microbial
respiration is tightly linked to microbial community properties
[7–11]. In turn, soil microbes and their functioning are determined
by the biotic and abiotic environmental conditions [12–14].
Microbial properties are strongly affected by the vegetation

type [15] and its diversity [16, 17]. Consequently, plant community
composition and diversity mediate microbial control over the soil
carbon balance [16–20]. Plant diversity can increase litter and
rhizosphere carbon inputs into the soil, thereby enhancing the
quality and quantity of resources for the soil microbial community
[21, 22]. This increase of rhizosphere carbon was shown to
enhance soil carbon storage [19, 23] by increasing soil microbial
biomass and activity [19, 24]. However, how plant diversity
modulates the microbial community and how this affects soil
carbon dynamics is not well understood. In addition, abiotic
conditions, such as climate and soil chemical properties (soil
carbon, nitrogen and phosphorus concentrations, pH, and

humidity) also drive the assembly and functioning of soil microbial
communities [12, 13, 25, 26]. For example, soil organic carbon
content is generally correlated with microbial biomass and activity
[19, 27], while nitrogen and phosphorus-limited soils exhibit
reduced microbial biomass and microbial community diversity
[28, 29]. Importantly, the effect of abiotic conditions on soil
microbes greatly depends on which facet of the microbiota is
assessed [30–32].
Soil microbial abundance, taxonomic and functional diversity

can be assessed in terms of microbial biomass (i.e., through
phospholipid fatty acid (PLFA) biomarkers or substrate-induced
respiration measurements), taxonomic community composition
and diversity (i.e., taxonomic profile through 16S rRNA gene and
ITS amplicon sequencing or PLFA biomarker measurements), or
potential functioning (i.e., functional profile through shotgun
metagenomics or qPCR of functional genes), respectively (Fig. 1).
Realized functions can be assessed by community level physio-
logical profiling (i.e., physiological potential through MicroResp ®

measurements) or microbial respiration measurements (Fig. 1). For
example, the taxonomic diversity of soil microbes generally
correlates with functional diversity [33], but these relationships
may decouple as results of microbial functional redundancy and
the different sensitivities of microbial facets to environmental
changes [30, 34, 35]. Alternatively, combining several
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measurements of the soil microbial community may provide a
deeper understanding of soil microbial functioning; however, the
different facets of soil microbial communities are rarely assessed
together.
Taken together, soil microbial biomass, taxonomic and func-

tional profiles are three key facets of the microbial community
shown to be critical for microbial respiration [8, 36, 37], but they
have not been studied together. Consequently, little is known
about the potential correlations between these microbial facets,
and their relationship to microbial functions [8, 36–38]. For
example, microbial respiration is tightly linked to the total
microbial biomass and the microbial taxonomic profile [7–11],
but the microbial functional profile has been shown to be more

relevant than the taxonomic profile to predict microbial realized
functions [36, 38, 39]. Moreover, microbial respiration is strongly
limited by the microbial physiological ability to process the
available substrates [40, 41]. Therefore, the microbial physiological
potential to process substrate is expected to be a powerful
predictor of microbial respiration and functions [40, 42]. The
physiological potential is believed to be dependent on the
microbial biomass, as well as the taxonomic and functional
profiles [42–45]. By predicting enzymatic activity [37, 39], the
microbial functional profile is hypothesized to be more closely
related to the physiological potential of the soil microbial
community than microbial biomass or taxonomic profile. How-
ever, no study has tested the individual or combined ability of

Fig. 1 Sampling and measurement design. Sampling design: A Plot layout of the BEF China experimental platform (site A), B Plot tree
planting grid pattern, C Soil core sampling design in tree species pairs, and treatment of samples. Measurements: (i) quantification of active
microbial biomass by substrate-induced respiration method (i.e., SIR, Scheu et al. [55]), (ii) quantification of total microbial biomass and
bacterial to fungal biomass ratio (B:F ratio) by measurement of soil microbial phospholipid fatty acids (PLFAs), (iii) qualification of microbial
profile by qPCR sequencing of soil 16S and ITS sequences, (iv) quantification of functional genes related to carbon catabolism by quantitative
microbial element cycling (QMEC, Zheng et al. [64]), (v) quantification of carbon dioxide released during 6 h after induction by a range of
substrates using MicroResp.® method (Campbell et al. [65]), (vi) quantification of soil microbial respiration by the O2-microcompensation
method.
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these different microbial facets to predict the microbial physio-
logical potential. A better understanding of the relationship
between microbial facets and realized microbial functions may
facilitate the integration of soil microbial processes into soil
carbon flux models [46–49].
To mechanistically understand tree diversity and soil chemical

properties effects on microbial functions, we sampled a sub-
tropical forest experiment in China [50], and explored the
contribution of different facets of the microbial community to
microbial functions by bringing these microbial facets and
functions together in a common framework. This biome has the
highest average net ecosystem productivity among Asian forests
[51] and is thus ideal for the study of carbon cycling and its
determinants. In 2018, we collected 150 samples in 52 plots from a
tree diversity experiment established in 2009. Across a tree species
richness gradient, we measured soil microbial respiration,
biomass, taxonomic and functional profiles, and physiological
potential, along with soil chemical properties (carbon, nitrogen,
and phosphorus concentrations, soil humidity, and pH). We
hypothesized that (H1) tree diversity would drive microbial
community facets (microbial biomass, taxonomic and functional
profile) and increase soil microbial functioning (microbial physio-
logical potential and respiration); (H2) soil microbial biomass,
taxonomic and functional profiles would be tightly correlated with
each other and together drive microbial functions; (H3) microbial
physiological potential would link microbial biomass, taxonomic
and functional profiles to microbial respiration; and (H4) that
environmental conditions (tree diversity and soil chemical proper-
ties) would co-determine soil respiration by modulating the
microbial community facets.

MATERIALS AND METHODS
Only key procedures are provided here, further details about the materials
and methods are available in Supplementary S1.

Study site, study design, and sampling
Our study site was located in south-east China in the Jiangxi province
(29.08-29.11° N, 117.90–117.93° E). Sampling took place in BEF-China, a tree
diversity experiment, including tree species mixture plots (1, 2, 4, 8, and 16
tree species per plot, Fig. 1) [50]. To account for the role of tree diversity
and soil quality, we collected 150 soil samples across different levels of tree
diversity randomly distributed in the landscape (Fig. 1, Supplementary S2).
We sampled from mid-August to late-September 2018, before the litterfall
season. To avoid spatio-temporal autocorrelation, the daily sample location
was chosen randomly; and to control for the distance to the trees, each
sample was extracted between a pair of trees. For each pair of trees, we
extracted four soil cores (5 cm diameter; 10 cm depth), 5 and 20 cm away
from the center point between the tree pair (Fig. 1). A composite sample
was built from these four cores by homogenizing with a 2mm sieve.

Soil quality analyses
Soil moisture was measured from 25 g of soil by drying at 40 °C for two
days. A subsample was used to measure soil pH in a 1:2.5 soil-water
solution. In addition, to measure soil total organic carbon (TOC), total
nitrogen (TN), and total phosphorus (TP), 200 g of soil were homogenized,
ground with a ball mill, and sieved at 0.25mm. Soil TOC was measured by
a TOC Analyzer (Liqui TOC II; Elementar Analysensysteme GmbH, Hanau,
Germany). Soil TN was measured on an auto-analyzer (SEAL Analytical
GmbH, Norderstedt, Germany) using the Kjeldahl method [52]. Soil TP
concentration was measured after wet digestion with H2SO4 and HClO4 by
a UV–VIS spectrophotometer (UV2700, SHIMADZU, Japan). Carbon to
nitrogen and carbon to phosphorus ratios were calculated as TOC:TN and
TOC:TP, respectively.

Soil microbial biomass
Microbial biomass was measured using PLFA analysis. PLFAs were
extracted from 5 g of frozen soil following Frostegård et al. [53]. Biomarkers
were assigned to microbial functional groups according to Ruess et al. [54],
see Supplementary S3. Total microbial biomass was calculated as the sum

of biomasses of all microbial groups. The ratio of bacteria to fungi (B:F) was
calculated as the ratio of the sum of all bacterial biomass markers to the
sum of all fungal biomass markers. Active microbial biomass was measured
from 6 g of soil using the substrate-induced respiration method following
Scheu et al. [55].

Soil microbial taxonomic profile
Microbial DNA was extracted from freeze-dried soil samples using
PowerSoil DNA Isolation Kit (MO BIO Laboratories Inc., Carlsbad, CA,
United States). DNA concentrations were checked with a NanoDrop
spectrophotometer (Thermo Fisher Scientific, Dreieich, Germany), and the
extracts were adjusted to 10–15 ng/µl. The bacterial and fungal amplicon
libraries were prepared following Schöps et al. [56] and Nawaz et al. [57].
Bioinformatic analysis was performed using the Quantitative Insights

into Microbial Ecology—QIIME 2 2020.2 [58]. The forward and reverse
reads were demultiplexed, primer sequences were trimmed, denoised, and
grouped into Amplicon Sequence Variants (ASVs) using cut-adapt for
chimera removal [59], via q2-cutadapt and DADA2 for non-target taxa
removal [60], via q2-dada2. ASV tables were imported into R with the
phyloseq package [61]. The fungal and bacterial ASVs were rarefied to
16,542 and 28,897 reads per sample, respectively. OTU richness, Shannon
diversity, Pielou evenness, and Gini dominance indices were calculated
using the microbiome package [62]. We inspected the correlations
between these indices and focused our analyses on Shannon diversity
index (Supplementary S4A).

Soil microbial functional profile
DNA was extracted with the FastDNA Spin Kit for Soil (MP Biomedicals,
USA) following the manufacturer’s instructions. DNA concentrations were
checked with a NanoDrop spectrophotometer (Thermo Fisher Scientific,
Dreieich, USA), and DNA concentrations were quantified with the
QuantiFluor dsDNA kit (Promega, USA) and a microplate reader
(SpectraMax M5, Molecular Devices). DNA was diluted to 50 ng/µl with
sterile water and stored at −20 °C. Microbial functional genes coding for
enzymes involved in carbon catabolism processes, which are central to soil
carbon cycling [63], see Supplementary S5, were quantified following
Zheng et al. [64] using a high-throughput quantitative-PCR-based chip
(SmartChip Real-time PCR system, WaferGen Biosystems, Fremont, USA).
To compare abundance patterns across functional genes, we scaled

each functional gene abundance between 0 and 1 across all samples using
the z-transformation, and we summed the scaled abundance of functional
genes related to carbon catabolism (i.e., “Cata”, Supplementary S5). To
quantify the evenness of the functional gene abundances, the functional
gene Pielou evenness was calculated using the R ‘diversity’ from the
‘vegan’ package (“FG evenness”).

Soil microbial physiological potential
Microbial physiological potential indices were calculated from substrate-
induced respiration assays using the MicroResp.® method [65]. This method
is used to assess the potential response of the living microbial community
(i.e., active and dormant) to substrate addition. Fourteen substrates from
three chemical classes (i.e., saccharides, amino-acid, and carboxylic acids)
were selected to cover complementary biochemical pathways and to
create a gradient of molecular weights (ranging from 89 to 221 gmol−1),
and a gradient of carbon oxidation states (ranging from −2 to 3 e−,
Supplementary S6). CO2 measurements were used to calculate substrate-
induced respiration efficiency (i.e., “SIR efficiency”) and SIR response range
(i.e., “SIR range”). SIR efficiency was calculated as the Pielou evenness (from
R ‘diversity’ function package vegan) of the CO2 production of all
substrates. SIR range was defined as the difference in CO2 production
between oxalic acid and alanine, the two substrates on the upper and
lower extremes of carbon oxidation. We performed sensitivity analyses to
explore the effects of substrate selection on these indices, which showed
that substrate selection did not alter our results and conclusions
(Supplementary S6).

Soil microbial respiration
Soil microbial respiration was measured on 6 g of fresh soil following Scheu
et al. [55] without adding any substrate or water, thereby reflecting the actual
respiration at the site. Active microbial biomass (with substrate addition) and
microbial respiration (without substrate addition) were measured on the
same sample and machine. To test the robustness of our results, all following
analyses were run with and without active microbial biomass.
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Statistical analyses
All data handling and statistical analyses were performed using the R
statistical software version 4.0.3, and all R scripts used for this study can be
found in our GitHub repository (https://github.com/remybeugnon/
Beugnon-Du_et_al_2021_Microbial_community_and_functions). All metrics
inferred from soil measurements are summarized in the Supplementary S4.
In order to avoid any model-fit deviation due to scale differences between
variables, all explanatory variables were centered and divided by two
standard deviations for our analyses using the R rescale function from the
arm package. For each analysis, we compared the drivers’ effect sizes
defined as the standardized estimate of a given variable in the model,
where the response variable was centered and divided by two standard
deviations.

Tree diversity effects on soil microbial community facets and functions. We
used linear models and normal distribution assumptions to test the effects
of tree species richness on soil microbial biomass (total and active
microbial biomass), taxonomic profile (B:F ratio and Shannon diversity of
bacterial and fungal communities), functional profile (catabolic functional
gene abundance and evenness), physiological potential (SIR efficiency and
range), and microbial respiration. Possible non-linear relations (i.e.,
quadratic, polynomial, and logarithmic relationships) were tested and are
shown in Supplementary S7A. The linear relationships were chosen when
the difference in AIC with the best model (i.e., model with the lowest AIC)
was lower than four. All previous linear models were tested in R using the
lm function, and statistical hypotheses of the following linear models were
tested in Supplementary S7B using the model_check function from the
performance package in R.

Relationships between soil microbial facets and microbial functions. We
tested the correlations between the microbial community facets (soil
microbial biomass, taxonomic and functional profiles) using Pearson
correlation tests. We used linear multivariate models and normal distribution
assumptions to test the effects of microbial biomass (total and active
microbial biomass), taxonomic profile (B:F ratio and Shannon diversity of
bacterial and fungal communities), and functional profile (catabolic functional
gene abundance, and evenness) on soil microbial physiological potential (SIR
efficiency and range), and soil microbial respiration. Explanatory variables
(microbial biomasses, taxonomic and functional profile indices) were selected
using forward and backward step selection based on AIC (i.e., R step function
from stats package). A variance partitioning analysis was performed on the
final set of variables to disentangle the effects of microbial biomass,
taxonomic and functional profiles using the R varpart function from the
vegan package. All previous linear multivariate models were tested in R using

the lm function and statistical hypotheses of the following linear models
were tested in Supplementary S8 using the model_check function from the
performance package in R.

Cascading effects of the different soil microbial community facets on
microbial physiological potential and microbial respiration. We tested the
relationships between soil microbial biomass, taxonomic and functional
profiles, physiological potential, and soil microbial respiration using a
Structural Equation Modeling (SEM) framework. Microbial biomass,
taxonomic and functional profiles were linked to each other by
correlations, and their effects on physiological potential indices and soil
microbial respiration were modeled with causal relations (directed paths).
Our SEM was fitted using the R sem function from the lavaan package [66].
The model fit to our data and model quality were estimated using three
complementary indices: (i) the root mean square error of approximation
(RMSEA), (ii) the comparative fit index (CFI), and (iii) the standardized root
mean squared residuals (SRMR). Model fits were considered acceptable
when RMSEA < 0.10, CFI > 0.9 and SRMR < 0.08. All statistical hypotheses
and complete outputs can be found in Supplementary S9 and S10.

Effects of tree species richness and soil quality on relationships between the
soil microbial community and their functions. To test the effects of tree
species richness and soil chemical properties on the relationship between
the soil microbial community facets and microbial respiration, we added the
causal effects of soil chemical properties and tree species richness on the
variables of our previous SEM model. To assess which group of response
variables (i.e., soil microbial biomass, taxonomic profile, functional profile,
physiological potential, and microbial respiration) was the most affected by
soil chemical properties and tree species richness, the effects of soil chemical
properties and tree species richness on each response group were
summarized by summing all the absolute standardized effects of soil
quality or tree species richness on the given response group. Additionally, to
assess the importance of each soil chemical property and tree species
richness, we summed the absolute standardized effects of each soil chemical
property and tree species richness. All statistical hypotheses and complete
outputs can be found in Supplementary S9 and S11.

RESULTS
Tree diversity enhances the soil microbial biomass, diversity
and functions
Our analyses showed that tree species richness enhanced soil
microbial community properties and functions. Total microbial

Fig. 2 Tree species richness effects on soil microbial community facets and functions. A Effect of tree species richness on microbial biomass
(i.e., “Total biomass” and “Active biomass”), taxonomic profile (i.e., bacteria to fungi ratio: “B:F”, bacteria Shannon diversity: “Bac. div.”, and fungi
Shannon diversity: “Fung. div.”), functional profile (i.e., the abundance of catabolism functional genes: “Cata” and functional genes evenness:
“FG eve.”), physiological potential (i.e., substrate-induced respiration efficiency: “SIR efficiency”, and substrate-induced respiration response
range: “SIR range”), and microbial respiration. B Relations between tree species richness and total microbial biomass, bacteria Shannon
diversity (i.e., “Bacteria diversity”), SIR efficiency, and microbial respiration. The significance levels were standardized across the panels (“.”:
p-value < 0.1, “*”: p-value < 0.05, “**”: p-value < 0.01, and “***”: p-value < 0.001).
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biomass and bacterial diversity increased significantly with tree
species richness (total microbial biomass: estimate ± SE=
0.020 ± 0.007, p-value= 0.003; bacteria diversity: 0.017 ±
0.007, p-value= 0.011; Fig. 2). Tree species richness signifi-
cantly increased soil microbial community substrate-induced
respiration efficiency (SIR efficiency: 0.022 ± 0.007, p-value=

0.001) and tended to increase microbial respiration (0.013 ±
0.007, p-value= 0.064, Fig. 2). Notably, the tree diversity effect
on total biomass and basal respiration were mostly driven by
high values in 24-species tree communities for microbial
biomass and lower variability for respiration (Fig. 2,
Supplementary S7A).
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Soil microbial community facets are strongly correlated
We observed a positive correlation between total soil microbial
biomass and active microbial biomass (Pearson correlation: cor=
0.45, p-value < 0.001), as well as a positive correlation between the
functional profile variables (cor= 0.57, p-value < 0.001). In addi-
tion, the bacteria to fungi ratio (B:F) was negatively correlated to
microbial biomass and the Shannon diversity of fungi (see Fig. 3A,
and Supplementary S8), while the Shannon diversity of fungi was
positively correlated to active microbial biomass (cor= 0.20, p-
value= 0.014; Fig. 3A, Supplementary S8).

Soil microbial community facets drive soil microbial functions
We tested the effects of soil microbial biomass and taxonomic and
functional profile on microbial community physiological potential
and respiration using linear models and AIC-based model

selection. Soil microbial community facets explained up to 50%
of the variance in microbial respiration, but only 19% and 4% of
the variance in SIR efficiency and range, respectively (Fig. 3B). For
all microbial functions, microbial biomass was the main driver by
explaining up to 43% of microbial respiration, 14% of SIR
efficiency, and 2% of substrate-induced respiration response
range (Fig. 3B, Supplementary S8). Together, microbial taxonomic
and functional profile only explained a small part of the variance
in microbial respiration (taxonomic profile: 6% and functional
profile: <1%, Supplementary S8), substrate-induced respiration
efficiency (taxonomic profile: 1% and functional profile: 2%,
Supplementary S8), and substrate-induced respiration response
range (functional profile: 1%, Supplementary S8). Active microbial
biomass effects on microbial functions were consistent by
increasing all functions (Fig. 3B, Supplementary S8).

Fig. 3 Correlation between soil microbial community facets and their effects on soil microbial function. Correlations between soil
microbial community facets (A), and effect of soil microbial community facets on microbial functions (B). A Correlation matrix of soil microbial
community facets: microbial biomass (i.e., “total biomass” and “active biomass”), taxonomic profile (i.e., bacteria to fungi ratio: “B:F”, bacteria
Shannon diversity, and fungi Shannon diversity), functional profile (i.e., the abundance of catabolism functional genes: “Cata” and functional
genes evenness: “FG evenness”). B Effects of microbial community facets on substrate-induced respiration efficiency and response range (i.e.,
“SIR efficiency” and “SIR range”, respectively), and microbial respiration. The explained variance (in %) of the model after model selection is
displayed in the first row. The model variance partitioning between the different microbial facets (i.e., biomass, taxonomic and functional
profile) is displayed in the second row. For each response variable (i.e., column), the circles are proportional to the part of explained variance
and the intersects to the shared variance between two groups of variables. The last rows display the standardized effect sizes of the selected
variables. The significance levels were standardized across the panels (“.”: p-value < 0.1., “*”: p-value < 0.05, “**”: p-value <0.01, and
“***”: p-value < 0.001). l. Color scale. The colored bar represents both the correlation strength in A and the effect size of the microbial
community facets in B both between −1 and 1.

Fig. 4 Structural equation model based on the effects of microbial community facets (i.e., microbial biomass: “Total biomass” and active
microbial biomass, “Active biomass”; and, taxonomic profile: bacteria to fungi ratio, “B:F”; bacterial and fungal Shannon diversity, “Bac.
div.” and “Fung. div.” respectively), genetic profile (i.e., carbon catabolism functional genes abundance: “Cata”, and evenness: “FG
eve.”), and physiological potential (i.e., substrate-induced respiration efficiency and response range: “SIR efficiency” and “SIR range”) on
ecosystem function (i.e., “Microbial respiration”). Correlations between nodes are drawn with double-headed arrows, while causal relations
were drawn with one-way arrows and are based on hypotheses explained in the main text; arrow widths are sized by the absolute effect
size. Green and blue arrows stand for positive and negative relations between nodes, respectively, and significant relations between
nodes are drawn with full lines, while non-significant relations are displayed with dashed lines, and the significance levels were standardized
(“.”: p-value < 0.1., “*”: p-value < 0.05, “**”: p-value <0.01, and “***”: p-value < 0.001). For each endogenous variable (i.e., response variable), the
part of variance explained (R2, in %) was added after the variable name.
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Soil microbial facets interact in mediating microbial
respiration
We tested the combined effects of soil microbial biomass,
taxonomic and functional profiles on microbial physiological
potential and respiration using an SEM framework. The addition of
microbial physiological potentials (“R2 with”) improved the
variance explained of microbial respiration compared to the
model considering microbial biomass and taxonomic and func-
tional profile only (R2with= 57% in Fig. 4 vs. R2without= 50% in
Fig. 3B). There were combined positive effects of microbial
biomass, fungal diversity, and physiological potential on microbial
respiration (active microbial biomass effect: estimate ± SE= 0.590
± 0.060, p-value < 0.001; fungi diversity: 0.128 ± 0.058, p-value=
0.027; SIR efficiency: 0.176 ± 0.062, p-value= 0.005; SIR range:
0.213 ± 0.057, p-value < 0.001, Fig. 4, Supplementary S10). Soil
microbial physiological potential, especially SIR efficiency, was
strongly affected by soil microbial biomass and functional profile
(total microbial biomass effect: 0.209 ± 0.083, p-value= 0.012;
active microbial biomass: 0.258 ± 0.082, p-value= 0.002; and

functional genes evenness: −0.179 ± 0.089, p-value= 0.045, Fig. 4,
Supplementary S10).
The total effect size (i.e., sum of effects) of soil microbial

biomass on microbial respiration was 0.672 (direct effect= 0.590,
indirect effect= 0.082), while the total effect size of microbial
taxonomic profile was 0.128 (only direct effect= 0.128), that of
functional profile 0.031 (only indirect= 0.031), and that of
physiological potential was 0.389 (only direct effects). Overall,
we observed a strong effect of microbial biomass (i.e., a quantity-
related measure, total effect: 0.672), but minor to neutral effects of
microbial diversity (i.e., diversity measures, total effect of
taxonomic and functional diversity: 0.159).

Soil quality shapes the relationship between the soil microbial
community and microbial functions
The addition of tree diversity and soil chemical properties to our
model increased the explained variance of microbial respiration
(R2with= 68% in Fig. 5 vs. R2without= 57% in Fig. 4) and explained
part of soil microbial biomass variance (R2microbial biomass= 46%

Fig. 5 Structural equation model based on the effects of soil chemical properties and tree species richness on microbial community—
ecosystem functioning linkages. A Structural equation model summary. Each node represents a group of variables, and each arrow
summarizes all the significant effects between all the variables of two nodes. Correlations between nodes are drawn with double-headed
arrows, while causal relations are drawn with simple arrows; arrow widths are sized by the sum of the absolute standardized effect size of
significant relations between all variables of the two nodes. When no significant relations were found between any variables of two nodes, the
arrows are drawn with dashed lines. Significant relationships between variables were specified in the figure (“.”: p-value < 0.1., “*”: p-value <
0.05, “**”: p-value <0.01, and “***”: p-value < 0.001). B Total effects of soil chemical properties and tree diversity (“Drivers”) on soil microbial
facets and functions. The total effect size of the exogenous variables (i.e., tree species richness: “TreeD”, total organic carbon: “TOC”, soil pH:
“pH”, soil relative humidity: “RH”, soil carbon to phosphorus ratio: “C:P”, and soil carbon to nitrogen ratio: “C:N”) on the microbial community
facets (i.e., total microbial biomass: “Bio”, active microbial biomass: “Active bio.”, bacterial and fungal Shannon diversity: “Bac. div” and “Fung.
div.”, bacteria to fungi ratio: “B:F”, catabolism functional genes abundance and evenness: “Cata” and “FG eve.”) et functions (substrate-induced
respiration efficiency and response range: “SIR eff.” and “SIR range”, and microbial respiration: “m. resp.”) are shown by circles sized according
to the sum of absolute standardized effect sizes. C Model explanatory power. R2 values of response variables (y-axis) for the model are
displayed on the x-axis. See Supplementary S11 for more details.
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Fig. 5, Supplementary S11). Soil chemical properties (i.e., soil carbon,
nitrogen, and phosphorus contents, soil pH, and humidity) affected
all soil microbial properties and their interrelationships (microbial
biomass, taxonomic and functional profiles, physiological potential,
and microbial respiration) with the strongest effect on soil microbial
biomass (total effect on microbial biomass: 1.474, total effect on
taxonomic profile: 0.199, no effect on functional profile, total effect
on physiological potential: 0.799, total effect on microbial respira-
tion: 0.312; Fig. 5, Supplementary S11). TOC was the most important
aspect of soil quality with a total effect of 1.383, while the total effect
of all other soil properties together reached 1.400 (Fig. 5). Moreover,
TOC and pH affected most of the microbial facets, while the other
soil chemical properties affected only one or a few of the microbial
facets (Fig. 5). For example, soil humidity increased microbial
respiration but decreased total microbial biomass (0.312 ± 0.054, p-
value < 0.001 and −0.234, p-value < 0.001, respectively); while,
carbon to phosphorus ratio only increased SIR range (0.269 ±
0.098, p-value= 0.006, Fig. 5, Supplementary S11).

Tree diversity effects on soil microbial respiration are
mediated by the microbial community facets
In addition, tree species richness affected soil microbial biomass
and taxonomic profile, and the community physiological potential
with a positive effect on total microbial biomass (0.173 ± 0.063, p-
value= 0.006), bacterial diversity (0.164 ± 0.082, p-value= 0.045),
and SIR efficiency (0.152 ± 0.073, p-value= 0.038, Fig. 5, Supple-
mentary S11). By increasing microbial biomass and physiological
potential, tree species richness indirectly increased microbial
respiration (indirect effect: 0.014).

DISCUSSION
Our results show a positive effect of tree diversity on the
measured soil microbial community facets and functions (H1). By
integrating soil microbial biomass, taxonomic and functional
profiles into a single framework, our analyses show how these
different facets of the soil microbial community are linked to each
other (H2) and mediate the effect of tree diversity and soil
chemical properties on microbial respiration (H3–H4). Our results
highlight that soil microbial biomass and physiological potential
are the main drivers of microbial respiration (H3). In turn, the
microbial physiological potential is strongly affected by microbial
biomass and functional gene evenness. Our results suggest that
the relationship between soil microbial facets and realized
functions are dependent on soil biochemistry. Taken together,
our study presents a comprehensive framework of tree diversity
effects on microbial community facets and functioning, providing
novel insights into the most crucial variables for modeling
changes in microbe-driven ecosystem functioning. For example,
focusing our future investigations on tree species richness, soil
carbon content, pH, and moisture will allow us to better predict
soil microbial biomass as well as functioning.

Soil microbial community facets drives soil microbial
functions
Our analyses showed strong positive effects of active microbial
biomass and the functional gene evenness on microbial
physiological potential and microbial respiration, as expected
based on previous studies [11, 19, 37]. Increasing microbial
biomass per se increases the number of cells processing
substrates and breathing, which results in enhanced total
microbial respiration. We found that fungal diversity reduced
microbial respiration, which contrasts with previous findings
which suggest a strong positive effect of fungal diversity on
microbial respiration [8]. Potentially, high fungal diversity coin-
cided with or was related to low availability of easily degradable
substrates and dominance of more recalcitrant carbon sources
[67], but see [68].

In addition, we found that microbial physiology had a positive
effect on microbial respiration by mediating functional gene
evenness and part of microbial biomass effects on microbial
respiration. Substrate-induced respiration methods like Micro-
Resp.® introduce to the microbial community a range of substrates
which target different oxidation pathways [63, 67] in order to
quantify the community’s physiological profile [65]. This method
provides an overview of the microbial community potential under
resource-rich conditions, and may also not adequately reflect
microbial respiration in situ, where different oxidation pathways
may not be evenly activated. However, in longer physiological
processes, such as litter decomposition, where litter chemical
composition is changing with time [69, 70], several oxidation
pathways are successively activated. Therefore, information on the
community’s potential to evenly cover a large range of
physiological pathways (i.e., provided by MicroResp® measure-
ments) may become critical.
By bringing together the different facets of the microbial

community, we showed the complementary effects of these
microbial community facets on microbial realized functions, the
significance of microbial biomass to explain microbial respiration,
and the mediation of microbial community facets effects on
microbial respiration by the microbial physiological potential. This
new insight on the links between microbial community facets and
realized functions would now need to be considered in future
efforts to model microbial processes in soils [46, 49, 71].

Soil chemical properties drive the soil microbial community—
microbial functions relationships
We found that soil chemical properties were the strongest drivers
of linkages between the soil microbial community and soil
functioning by affecting all facets of the microbial community
and microbial respiration. Soil organic carbon content had strong
positive effects on both microbial biomass and microbial
physiological potential, while soil pH affected microbial biomass,
taxonomic profile and physiological potential; however, the soil
chemical properties (i.e., soil carbon to phosphorus ratio, and soil
humidity) had less pronounced effects on fewer facets. For
example, soil humidity decreased microbial biomass but increased
microbial respiration, while soil C:P ratio only increased substrate-
induced respiration response range. These inconsistent effects of
soil chemistry on the different facets of the microbial community
were expected from previous studies showing different soil
variables and selection mechanisms for microbial taxonomic and
functional profiles e.g., [8, 36, 37]. However, our analyses
highlighted soil carbon content as the main driver of the microbial
community, affecting microbial biomass, taxonomic profiles, and
physiological potential. Together, these effects enhanced micro-
bial respiration. The major significance of soil carbon in structuring
soil microbial communities is well known and supported by many
previous local- e.g., [41, 44] to global-scale studies e.g., [12, 46].
Consequently, one might expect a negative feedback effect of

soil microbial respiration on organic carbon content, due to the
increase of soil carbon mineralization by the microbial community.
However, high microbial respiration and microbial biomass are
two strong indicators of microbial transformation of plant residues
and soil organic carbon to microbial necromass [4, 19, 20, 27, 72].
This transformation of easily decomposable plant material to
microbial necromass may increase soil carbon residency time, and
therefore soil carbon storage [49]. Our results provide novel
insights on a positive tree diversity-induced feedback of soil
carbon content on soil carbon storage by increasing soil microbial
biomass and functioning. However, further empirical and theore-
tical studies are needed to mechanically test the effects of soil
carbon chemical pools on soil bioprocesses as well as soil carbon
sequestration. This requires a better description and measurement
of the soil carbon chemical pools [49, 72]. Furthermore, mechan-
istic and dynamic models need to be built and calibrated on
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temporal data to predict soil carbon dynamics [49, 71], and to
consider the context-dependency of the microbial processes to
biotic and abiotic environmental conditions [44, 71, 73, 74].

Tree diversity effects on soil respiration mediated via changes
in the soil microbial community
We observed a positive effect of tree species richness on the
different facets of the microbial community and its functions. Our
results demonstrate that tree species richness drives soil microbial
functions, such as microbial respiration, by modifying the soil
microbial community: microbial biomass and diversity. Such
positive effects of tree diversity on microbial biomass were shown
in the past across biomes. They were explained by an increase of
tree productivity and thus of tree carbon release into the soil e.g.,
root exudation, [21], litter production, [22, 75]. Additionally, tree
diversity is expected to increase substrate diversity available to soil
microorganisms [21, 25, 76, 77]. Such an increase in substrate
diversity could explain the enhancement of substrate-
induced respiration efficiency observed by selecting microbial
communities adapted to diverse substrate inputs [78]. These
results suggest a double effect of tree diversity on the microbial
community. On the one hand, tree diversity maintains
higher microbial biomass by increasing tree productivity and
carbon inputs into the soil. On the other hand, tree diversity
increases the heterogeneity of the organic inputs [79], and
maintains a higher level of functioning by increasing microbial
physiological potential. In this study, the positive effect of tree
diversity on microbial respiration was mostly driven by enhanced
microbial biomass.

CONCLUSION
In conclusion, we showed that tree diversity and soil carbon
content drive microbial respiration through their effects on the
different soil microbial community facets. We identified microbial
biomass as the main predictor of microbial respiration, by
incorporating the different soil microbial community facets and
their drivers in a common framework. These results suggest a
positive tree diversity-induced feedback of soil carbon content on
soil carbon storage by increasing soil microbial biomass and
respiration. These novel insights should be considered in efforts to
model soil carbon dynamics and feedbacks to atmospheric carbon
concentrations [46] as well as the ecosystem consequences of
reforestation approaches [80–83].
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