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Introduction 

Citation 

"Climate change is the single greatest challenge of our time, 

Of this, you're certainly aware. 

It's saddening, but I cannot spare you 

From knowing an inconvenient fact, because 

It's getting the facts straight that gets us to act and not to wait. 

So I tell you this not to scare you, 

But to prepare you, to dare you 

To dream a different reality, 

Where despite disparities 

We all care to protect this world, 

This riddled blue marble, this little true marvel"  

from Earthrise by Amanda Gorman 

Prologue 

Anthropic activities have a disastrous effect on climate; however, climate change is not the 

"single greatest challenge"; our impact on Earth is even broader. We have entered the sixth 

major species loss crisis the world has ever experienced, and we are causing it. Earth will 

survive with or without these species, but will we? If this "scares us", we need to understand 

the impact of species loss on Earth's ecosystems and the functions they provide for us in order 

to "prepare ourselves", protect our future and this "little true marvel" that are our ecosystems. 

Understanding the impact of species loss on ecosystems is one of the most important research 

questions of the last century. The relationships between species and their ecosystem is even the 

core of ecology: "the relationships between air, land, water, animals, plants, etc., usually of a 

particular area, or the scientific study of it" (Cambridge Dictionary). One way to explore these 

questions and understand the consequences of species loss is to simulate their loss in designed 

diversity experiments: the so-called biodiversity-ecosystem functioning (BEF) experiments. 

For decades, scientists have been building BEF experiments across biomes worldwide 

(Bruelheide et al. 2014; Givnish 1994; Lepš 2004; Wardle 2016; Eisenhauer et al. 2016). In 

this work, my colleagues and I investigated how the loss of tree species affects carbon cycling 

in subtropical Chinese forests, as this biome accounts for the highest average net ecosystem 

productivity among Asian forests (Yu et al. 2014). 
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Background 

Human activities increase the worldwide biodiversity loss 

Humanity is changing its environment worldwide (Crutzen 2006; IPBES 2019; IPCC 2013, 

2021). Numerous studies are pointing out the effects of human activities; such as urbanization, 

farming, or industrial productions; on environmental abiotic1 conditions (Fig. 1): climate 

(IPCC 2013, 2021), air (Akimoto 2003) and water quality (Baker 2006), and soils (FAO et al. 

2020). In addition, human effects on the environmental abiotic conditions (e.g., temperature, 

water quality) have negative consequences on biota (Fig. 1, IPBES 2019). For example, 

increasing atmospheric CO2 and its effects on climate change are responsible for species 

extinctions (IPBES 2019). Likewise, increasing atmospheric CO2 is increasing seawater acidity 

and leads to species extinctions in marine 

ecosystems (Bindoff et al. 2019). 

Moreover, human activities are the main 

direct stressors of environmental biotic 

parameters (Fig. 1) by increasing species 

extinctions (FAO et al. 2020; Fenoglio et 

al. 2020; IPBES 2019) or biotic invasions 

(Bellard et al. 2016; Domenech et al. 

2005; IPBES 2019). For example, 

increasing land-use intensity reduces the 

abundance and diversity of birds (Jetz et 

al. 2007), mammals (Brehm et al. 2019; 

Gallego-Zamorano et al. 2020), and 

arthropods (Attwood et al. 2008; 

                                                 
1 words in italics are defined in the Glossary section page 2 

Fig. 1: Human-induced stressors of abiotic and 

biotic environmental conditions and 

consequences for ecosystem multifunctionality, 

adapted from Giling et al. (2019). 
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Birkhofer et al. 2015; Hendrickx et al. 2007; Toussaint et al. 2021). Likewise, industrial 

pollutions can get rid of entire ecosystems (Beaumelle et al. 2021; Rodríguez-Eugenio et al. 

2018). 

Together, human activities directly and indirectly (e.g., through human-induced climate 

change) affect all biota on Earth, resulting in the worldwide loss of species (IPBES 2019; 

Pörtner et al. 2021), from the most charismatic ones (e.g., white bears and dodo) to the most 

ignored ones (e.g., soil biodiversity loss, FAO et al. 2020). For example, a recent report shows 

that 15% of the species are declining in the UK, and about 2% are threatened of extinction 

(JNCC 2019). The actual species loss is so intense and fast that we are even losing species we 

have not discovered yet (Ceballos et al. 2015). 

Species loss affects ecosystem functioning 

The consequences of species loss for ecosystems has been a hot topic in science for the past 

decades (Elton 1958; Tilman 1997; Yachi and Loreau 1999). Studies suggested that diversity 

maintains higher ecosystem functioning (Midgley 2012; Schuldt et al. 2018), and thus, the 

ecosystem services provided to human populations (Bennett et al. 2015; Brockerhoff et al. 

2017; Cardinale et al. 2012). Biodiversity maintains ecosystem services such as wood for 

human production (Brockerhoff et al. 2017; FAO and UNEP 2020), arable lands, food for 

livestock and humans (FAO et al. 2020; FAO and UNEP 2020), and recreational areas (Bolund 

and Hunhammar 1999). Together, the human-driven stressors of ecosystems and the loss of 

species increase the risks of ecosystem collapse (MacDougall et al. 2013), and thereafter, the 

loss of all the ecosystem services they provide (Pörtner et al. 2021; IPBES 2019). However, a 

holistic and mechanistic understanding of species loss consequences for ecosystem functioning 

remains to be further explored (Eisenhauer 2019; Eisenhauer et al. 2020). 
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Forests are an essential ecosystem on Earth 

Reducing primary producer diversity (e.g., plants and phytoplankton) has negative 

consequences for primary productivity (Cardinale et al. 2012; Duffy et al. 2017; Huang et al. 

2018; Liang et al. 2016), ecosystem resilience and stability to major events such as droughts 

(Vogel et al. 2012; Kreyling et al. 2017; Rodriguez-Ramirez et al. 2017). Thus, by limiting 

carbon fixation and organic input, the lost primary productivity is a critical loss of ecosystem 

services for human populations and the ecosystem. Especially, forests are crucial primary 

producers (Bastin et al. 2019; FAO and UNEP 2020); indeed, among biomes, forests represent 

more than 30% of the Earth's surface, account for 75% of the global primary production, and 

contain 80% of the Earth plant production (FAO and UNEP 2020; Pan et al. 2013). Primary 

forests are irreplaceable for sustaining biodiversity (Gibson et al. 2011); however, global tree 

plantation initiatives show the potential of reforestation programs to mitigate climate change 

Fig. 2: Forest carbon cycle (A) and its associated carbon budget (B). Black arrows 

represent carbon fluxes in forest.  
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(Bastin et al. 2019; Cook-Patton et al. 2020; Lewis et al. 2019) by fixing carbon aboveground 

and enhancing carbon storage belowground (Domke et al. 2020; Shao et al. 2019; Walker et 

al. 2020; Fig. 2). 

Tree diversity affects carbon budget in forests 

Worldwide, tree diversity increases forests productivity (Forrester and Bauhus 2016; Liang et 

al. 2016; Zhang et al. 2012), and thus, increases forest aboveground carbon storage (Castro-

Izaguirre et al. 2016; Huang et al. 2018). Moreover, tree diversity increases soil carbon storage 

(Li et al. 2019; Liu et al. 2018; Xu et al. 2020). Consequently, tree diversity increases 

aboveground and belowground carbon pools, thereby, the overall forest carbon content (Liu et 

al. 2018; Fig. 2).  

In addition, tree diversity reduces carbon efflux (Fig. 2.B), such as erosion (Schuldt et al. 2018; 

Song et al. 2019), while maintaining a high level of carbon flux between forest carbon 

compartments (e.g., trees, consumers, soil, Fig. 2.B). For example, tree diversity enhances the 

amount of litterfall (Huang et al. 2017) and litter decomposition (Scherer-Lorenzen et al. 2007; 

Kou et al. 2020); thus, the release of aboveground products to soils. Altogether, by increasing 

carbon inputs and reducing carbon outputs, tree diversity increases carbon residency time in 

forests (Fig. 2.B); therefore, tree diversity could play a major role in carbon mitigation. In the 

following sections, I reviewed the mechanisms behind tree diversity effects on carbon cycling 

in forests explaining tree diversity positive effects on carbon storage. 

Tree diversity increases forest productivity 

In forests, trees are the main primary producers fixing inorganic carbon (CO2) by 

photosynthesis in their leaves. The mechanisms behind diversity-productivity relationships are 

manifold and were reviewed by Forrester and Bauhus (2016). In short, tree diversity increases 

forest productivity by increasing complementarity between species, thus allowing for better 

nutrient, water, and light uptakes. For example, tree diversity increases light interception by 
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increasing crown structural complementarity (Williams et al. 2017); likewise, tree diversity 

increases water and nutrient uptakes by sharing nutrients through the tree associated 

mycorrhizal network (Simard et al. 2012) or by increasing root foraging (Brassard et al. 2013). 

Forrester and Bauhus (2016) highlighted two types of complementarity: the complementarity 

of structures (e.g., canopy structure, root foraging strategies) and the complementarity of 

processes (e.g., differences of mycorrhizal symbiosis strategies). The complementarity of 

structures and processes for light, nutrients, and water can take place at three levels (Barry et 

al. 2019): (i) by using complementary substrates (e.g., using different chemical forms of a 

given nutrient), (ii) by increasing spatial complementarity (e.g., increasing crown 

complementarity or root foraging strategies Cheng et al. 2016; Williams et al. 2017), and (iii) 

by increasing temporal complementarity (e.g., increasing the differences in trees phenology, 

Sapijanskas et al. 2014). In addition, tree diversity stabilizes forest productivity (Fichtner et al. 

2020; Morin et al. 2014) by enhancing the asynchronous responses of tree species to 

environmental variability and extreme climatic events (Goodman 1975; Schnabel et al. 2019). 

Further, understory plant communities are related to the tree community composition and 

diversity (Germany et al. 2017). Therefore, one could expect tree species richness to affect the 

understory plant community; indeed, tree diversity was shown to increase the cover of forbs 

(Vockenhuber et al. 2011). These positive effects of tree diversity on understory productivity 

would increase the overall forest productivity. However, neither herb layer productivity nor 

diversity is affected by tree layer diversity (Both et al. 2011; Germany et al. 2017).  

Tree diversity controls aboveground fauna 

Tree primary production is the basis of the food web in forests; this is especially true for 

primary consumers such as herbivores (Fig. 2.B). Herbivory is a major threat to forest 

productivity (Flower and Gonzalez-Meler 2015; Visakorpi et al. 2021); meanwhile, herbivore 

faeces and necromass are a significant flux of organic carbon from the tree to the forest floor 



Introduction 

 

9 

(Kenis et al. 2017; Metcalfe et al. 2014). Moreover, the conversion of plant material into faeces 

is now known to increase litter decomposition and stimulate litter carbon dynamic (Joly et al. 

2018; Joly et al. 2020). Overall, herbivory is critical for carbon cycling in forests by transferring 

tree products to the forest floor and stimulating organic matter recycling (Metcalfe et al. 2014; 

Schmitz and Leroux 2020). 

By increasing tree productivity, tree diversity should enhance herbivory and thus carbon release 

to the forest floor. However, a recent review of tree diversity effects on herbivory by Jactel et 

al. (2021) showed the negative effect of tree diversity on herbivory (Schuldt et al. 2018; 

Vehviläinen et al. 2007). In this meta-analysis, Jactel et al. (2021) review the different 

mechanisms behind diversity effects on herbivorous species. Tree diversity is expected to 

increase herbivore diversity by increasing specialist herbivores. However tree diversity reduces 

the abundance of herbivore by reducing the abundance of host tree species for specialist 

herbivores (i.e., Ressouce Concentration hypothesis, Root 1973; Castagneyrol et al. 2014) 

and/or increasing the pressure of predators and parasitoids by providing a higher diversity of 

diets/hosts and micro-habitats to the predators/parasitoids (i.e., Enemies hypothesis, Russell 

1989; Castagneyrol and Jactel 2012). Therefore, we would expect tree diversity to reduce 

herbivory stimulation of the carbon cycle (Metcalfe et al. 2014; Schmitz and Leroux 2020); 

however, such causal relations have not yet been tested in forests. 

Tree diversity increases the release of organic carbon on forest floors 

The carbon newly fixed by photosynthesis is released on the forest floor through litterfall (Fig. 

2.A). The increase of tree productivity increases the amount of litterfall released (Huang et al. 

2017; Sonkoly et al. 2019), and thus tree organic carbon releases. Therefore, litterfall becomes 

a critical process to understand tree diversity effects on carbon fluxes between the trees and 

soil compartments, and thus carbon cycling in forests. Moreover, tree diversity increases the 

diversity of tree carbon products (e.g., leaf litter, exudates). For example, increasing tree 
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diversity increases litter diversity (Huang et al. 2017), thus increasing the diversity of substrates 

offered to consumer communities such as decomposers. Therefore, in diverse forests 

accounting for higher productivity, recycling this high input of diverse organic compounds is 

crucial for carbon cycling. 

Tree diversity increases the assimilation of forest aboveground products in 

soils 

Litter decomposition – including the fragmentation of litter, its incorporation into the soil, and 

its mineralization due to enzymatic activities – is the main recycling process in forests 

controlling for the release of nutrients (e.g., nitrogen and phosphorus) into soils (Coûteaux et 

al. 1995; Hättenschwiler et al. 2005; Wardle et al. 2002). Increasing tree diversity enhances 

litter decomposition in forests (Garnier et al. 2004; Gessner et al. 2010; Joly et al. 2017; Handa 

et al. 2014). Thus, tree diversity effects on litter decomposition are mediated by (i) litter quality, 

(ii) decomposer activity, and (iii) environmental conditions (Hättenschwiler et al. 2005). 

(i) Effects of tree diversity on litter quality: the litter quality effect on decomposition can be 

characterized by the litter decomposability (i.e., ability of the litter to decompose measured in 

controlled environment, Freschet et al. 2012). Litter decomposability is strongly influenced by 

the litter chemical and physical traits (Lin and Zeng 2018; Lin et al. 2021). For example, 

increasing nitrogen and phosphorus litter content increases litter decomposability by reducing 

stoichiometric limitations for the decomposer community (Fanin et al. 2012; Patoine et al. 

2020). In addition, increasing litter diversity increases litter decomposability (Zhou et al. 2020; 

Lin and Zeng 2018). The positive effect of litter diversity on litter decomposability was 

reported as resulting from the enhancement of slow-decomposing species by fast-decomposing 

species (Lin and Zeng 2018). The positive effect of fast decomposing species over slow-

decomposing species was explained by the complementarity of species litter chemical 

composition (Hättenschwiler 2005). For instance, the nitrogen-rich litter will provide nitrogen 
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to nitrogen-poor litter; this nutrient transfer between species is expected to be carried out by 

decomposer communities, especially through the fungal network (Schimel and Hättenschwiler 

2007). However, the effects of litter diversity on litter decomposition strongly depend on the 

environmental conditions (Madritch and Cardinale 2007) and decomposer community 

adaptation (Barantal et al. 2011; Fanin et al. 2021; Zhou et al. 2020). 

Furthermore, litter addition is known to enhance remaining litter and soil organic matter 

decomposition by providing new nutrient-rich litter to decompose (Xu et al. 2018). Therefore, 

positive effects of tree diversity on tree litterfall asynchrony (Huang et al. 2017) would be 

expected to have a positive effect on litter decomposition by providing several litter inputs 

during the year. However, such mechanisms remain to be tested. 

(ii) Effects of tree diversity on the decomposer community: tree species diversity is expected 

to enhance decomposer community biomass and diversity (Wardle et al. 2006). Several 

mechanisms are expected to play a role there: first, the positive effect of tree diversity on tree 

productivity has a positive effect on decomposer biomass by increasing the abundance of 

substrates, thus reducing competition for resources; however, such a mechanism may only play 

a significant role in resource-limited environments (see Enrichment paradox, Rosenzweig 

1971; Roy and Chattopadhyay 2007). Second, increasing tree diversity increases litter 

diversity, which is expected to increase the number of niches offered to the decomposer 

community, and thus the decomposer community biomass and diversity (Gessner et al. 2010). 

Maintaining a higher abundance and diversity of decomposers would enhance their activity, 

and thereafter, litter decomposition (Ebeling et al. 2014; Nielsen et al. 2011). For example, a 

high complementarity of microbial physiological pathways enhances carbon use efficiency and 

decomposition (Loreau et al. 2001). Taken together, tree diversity should enhance decomposer 

community abundance, functioning, and stability (Nielsen et al. 2011). 
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(iii) Effects of tree diversity on the micro-climatic conditions: tree diversity effects on micro-

climatic conditions is gaining attention in ecology studies. First, the increase of sensors 

increases the data availability worldwide; for example, with the creation of worldwide 

databases of soil temperature (Lembrechts et al. 2020). Then, the predicted increase of 

worldwide temperatures and extreme climatic events (e.g., drought and flood, IPCC 2013, 

2021) is expected to have consequences for ecosystem functions such as decomposition (Aerts 

1997; Wall et al. 2008) and forest productivity (Ciais et al. 2005). Tree diversity is expected to 

increase litter decomposition by optimizing the micro-climatic conditions such as temperature 

and humidity (Gottschall et al. 2019; Hättenschwiler et al. 2005). For example, a recent study 

suggests that increasing tree diversity would increase litter decomposition in European 

temperate forests by reducing night cooling and favoring decomposer activity at night 

(Gottschall et al. 2019). This tree diversity effect on temperature could result from a higher 

canopy cover in species-rich forests (Williams et al. 2017), which acts as a buffering layer 

(Frenne et al. 2021). Therefore, tree diversity buffering of soil temperature is the consequence 

of higher aboveground crown structural complementarity and productivity in species-rich 

forests, however, only few studies explored these mechanisms. 

Tree diversity increases soil carbon storage 

Tree diversity increases soil carbon storage (Li et al. 2019; Liu et al. 2018; Xu et al. 2020), 

which is the result of carbon influx from the vegetation to the soil and carbon efflux from the 

soil to the atmosphere or by erosion (Fig. 2.B). As mentioned earlier, increasing tree diversity 

increases tree productivity, and thereafter tree organic matter released into the system, for 

example, by increasing the amount of litterfall (Huang et al. 2017) and its decomposition 

(Handa et al. 2014), or by increasing root desiccation and exudation as suggested in grassland 

systems (Eisenhauer et al. 2017). However, tree diversity was shown to reduce the root to shoot 

ratio (Guillemot et al. 2020), as tree diversity is expected to increase aboveground productivity 
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(Kunz et al. 2019) while reducing root productivity (Madsen et al. 2020). The reduction in root 

productivity is explained by a lower investment of trees in root foraging with increasing root 

structural complementarity in species-rich forests. Therefore, we could expect a lower amount 

of exudation in forests due to a lower amount of fine roots, but such evidence remains scarce. 

Moreover, until recently, dead fauna biomass (e.g., herbivores, detritivores, and higher food 

web levels) was expected to have a neglectable impact on soil carbon cycle due to the pyramidal 

structure of the food web biomass (Odum and Barrett 2005). However, a recent literature 

review shows the strong significance of the consumer food web in controlling the soil carbon 

cycle by providing recalcitrant organic material to the system (Schmitz and Leroux 2020). 

Thereafter, positive effects of tree diversity consumers communities should enhance inputs of 

recalcitrant organic matter and thus enhance soil carbon storage. 

Tree diversity is expected to reduce soil erosion (Song et al. 2019). For example, increasing 

litter coverage reduces the impact of raindrops on soil (Seitz et al. 2015). Likewise, tree 

diversity was shown to increase root filling of the soil volume (Madsen et al. 2020), and thus 

reduce soil erosion (Reubens et al. 2007; Burylo et al. 2012). However, these mechanisms 

remain weakly studied in forest systems, but additional support for these mechanisms can be 

found in grasslands (Berendse et al. 2015; Durán Zuazo and Rodríguez Pleguezuelo 2008; Hou 

et al. 2016; Pérès et al. 2013). 

In addition to a physical stabilization of soil carbon by tree diversity effects on soil erosion, 

tree diversity is expected to promote the biochemical stabilization of the soil organic matter 

(Xu et al. 2020). Plant organic compounds integrate the soil organic matter pool and are 

consumed by soil decomposers, especially soil microfauna. Therefore, the stability of soil 

organic matter and its residency time highly depend on the performance of soil microbial 

communities (Bastida et al. 2021; Maron et al. 2018; Crowther et al. 2019). Recent studies 

suggest a positive effect of microbial activity on soil carbon storage by enhancing the 
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transformation of soil organic matter to stable microbial necromass (Buckeridge et al. 2020; 

Lange et al. 2015; Miltner et al. 2012; Schmidt et al. 2011). Therefore, the success of soil 

carbon sequestration is highly limited by our understanding of tree diversity ~ soil microbial 

community functioning relationships. 

Microbial communities are determined by aboveground vegetation type and its diversity 

(Durán and Delgado-Baquerizo 2020; Pei et al. 2016). For instance, tree diversity enhances 

soil microbial biomass (Pei et al. 2017; Gillespie et al. 2020), diversity (Singavarapu et al. 

2021) and functioning (Gillespie et al. 2020; Gillespie et al. 2021), thus tree diversity should 

increase soil carbon storage. Together, tree diversity control over soil carbon storage is physical 

by reducing soil erosion and leaching, and biochemical by increasing soil organic carbon inputs 

and microbial stabilization of soil carbon. 

A handful of mechanisms can explain tree diversity effects on the carbon cycle 

Tree diversity effects on forest carbon cycling are manifold; however, a few mechanisms can 

explain these effects: the increase of complementarity between species, modification of 

consumer communities and their functions, and the stabilization of biological processes (Fig. 

3). Primary producers (e.g., trees) complementarity effects on ecosystem functioning have been 

reviewed by Barry and colleagues (2018) and categorized as follows: (i) resource partitioning, 

(ii) abiotic facilitation, and (iii) biotic feedbacks from other trophic levels. At the food web 

level, trophic complementarity has been defined as the combined effect of exploitative 

processes and competition in the food web (Poisot et al. 2013); in other words, the combined 

effect of resource partitioning of the different trophic levels. For example, at the plant level, 

the trophic complementarity is the combined effect of plant resource partitioning and 

complementarity of herbivores (or "negative biotic feedback", Barry et al. 2019). Increasing 

trophic complementarity is expected to increase food web productivity (Poisot et al. 2013). I 

highlighted the strong pieces of evidence of resource partitioning at all trophic levels in species-
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rich forests. Let us consider the case of resource partitioning in the use of different substrates: 

first, tree species richness is increasing resource partitioning, for example, by increasing the 

complementarity of mycorrhizal associations and thus foraging mechanisms. Then, tree 

diversity increases the diversity of tree products offered to the consumer communities (i.e., 

herbivores and decomposers), which increases the resource niche size, and thus favors resource 

partitioning among consumers (Fig. 3). The same causal cascade would be expected for spatial 

and temporal resource partitioning: first, the plant community benefits from it (e.g., crown 

complementarity for light interception or phenological complementarity); then, the consumer 

community and the processes they carry out benefit from the tree products spatio-temporal 

complementarity (Fig. 3). 

Lack of spatio-temporal aspects 

A major characteristic of species-rich forests is their spatial heterogeneity due to the tree 

species spatial distribution. Increasing tree species richness is expected to increase forest spatial 

heterogeneity and stabilize ecosystem functioning (Wang et al. 2021). The consequences of 

Fig. 3: Conceptual framework of tree diversity effects on ecosystem functioning. Black arrows 

represent the causal relationships between the ecosystem parameters. Colored boxed highlight the substrate 

(green), spatial (red) and temporal (blue) partitioning or complementarity of resources, tree products, 

consumer communities and functions. 
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spatio-temporal heterogeneity; such as crown structural complementarity (Williams et al. 

2017), or tree phenology (Sapijanskas et al. 2014); have been thoroughly explored in a tree 

productivity perspective. However, the effects of tree diversity on the spatial and temporal 

distribution of tree products, and thus, the consequences for higher trophic levels and carbon 

cycling remain rarely explored. For example, how increasing tree spatial heterogeneity would 

affect litter distribution on the ground and how such changes will affect decomposition 

processes remain unknown. Moreover, as the soil microbiome is related to tree composition 

(Pei et al. 2016), it is crucial to understand how increasing tree spatial and temporal 

heterogeneity will affect soil microbial dynamics and processes. Taken together, the diversity-

driven carbon cycle is more and more recognized, but the effects of tree diversity on forest 

spatial and temporal heterogeneity and the relevance for carbon cycling in forests remain 

unclear. 

Objectives 

The aim of this thesis is to understand the mechanisms behind tree diversity effects on forest 

carbon cycling and how these mechanisms are mediated by microbial communities and tree 

diversity-induced spatial heterogeneity (Fig. 4). In the first chapter (Chapter I), my colleagues 

and I investigated how tree diversity effects on litter decomposition are mediated by litterfall 

patterns and microbial processes. In the second chapter (Chapter II), we explored how tree 

diversity affects soil microbial communities and their functions. Then, in the third chapter 

(Chapter III), we synthesized these findings to understand how tree diversity effects on soil 

microbial biomass and carbon concentrations are mediated by tree diversity effects on 

environmental conditions. Finally, we explored the implication of our results for climate 

change mitigation and their consequences for reforestation projects (Chapter IV). Together, my 

studies aim to give a holistic view of tree diversity effects on forest carbon cycling and its 

mediation by the microbial communities and the diversity-driven spatial heterogeneity.



 

 

Fig. 4: Conceptual figure linking tree diversity effects on forest carbon cycle and the associated chapters. 
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Experimental design 

 Our studies have been performed within 

the Chinese subtropical biodiversity-

ecosystem functioning tree experiment 

BEF-China (Fig. 5; Bruelheide et al. 2014) 

located in Southeast China. This biome 

has the highest average net ecosystem 

productivity among Asian forests (Yu et 

al. 2014) and is thus important for the 

study of carbon cycling and its 

determinants. Our sampling was based on 

the TreeDì sampling design focusing on 

tree-tree interactions (Trogisch et al. 

2021). This design aims to study the effect 

of tree-tree interactions on ecosystem 

functions by following pairs of trees (i.e., tree species pairs: TSP, Fig. 6.A) from twelve tree 

species along a plot diversity gradient ranging from 1 to 16 species (Fig. 5, Bruelheide et al. 

2014). The neighbors of a TSP are defined as the ten trees directly adjacent in the planting grid 

(Fig. 6.A). Each TSP was replicated three times in each richness level of the broken stick design 

(see "broken stick design", Bruelheide et al. 2014), resulting in 180 TSPs in total. Our sampling 

consisted of three sampling periods (Fig. 6.B): (i) September 2018 for the soil sampling 

(Chapter II-III) and the installation of litter traps (Chapter I), (ii) December 2018 from the 

collection of litter after litterfall and the installation of the decomposition experiments (Chapter 

I), and (iii) September 2019 to sample the decomposition experiments (Chapter I).

Fig. 5: BEF-China Site A: elevation plot and 

diversity treatments (Bruelheide et al. 2014). The 

plot elevation ranging from 105 to 280 m. 



 

 

 

Fig. 6: A. Tree species pair experimental spatial design, and B. Description of the sampling campaigns. *: tree biomass was estimated from 

the measurements of the TreeDì project P5G (Mariem Saadani, Prof. Dr. Helge Bruelheide), crown structural complementarity was measured by 

the project P1G (Maria D. Perles Garcia, Dr. Matthias Kunz, Prof. Dr. Goddert von Oheimb), leaf functional traits were measured by the project 

P2G (Andréa Davrinche, Dr. Sylvia Haider). **: soil sampling and measurements were performed in collaboration with the project P7G (Bala 

Singavarapu, Dr. Tesfaye Wubet), and P8C (Dr. Jianqing Du, Dr. Kai Xu, Prof. Dr. Yanfan Wang) 
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