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BIODIVERSITY AND ECOSYSTEM FUNCTIONING

MacDougall et al. 2013
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29.08-29.11° N, 117.90-117.93° E

[ ] No tree species
[ ] monocuiture
7] 2tree species
I 4tree species
I 8 tree species
I 16 tree species
I 24 tree species

[ j Free succession

Bruelheide et al. 2014, Scholten et al. 2017

Mean annual temperature of 16.7 °C
Mean annual rainfall of 1 821 mm

Soils are Cambisols and derivative, with Regosol on ridges

Natural vegetation: Cyclobalanopsis glauca, Castanopsis
eyrei, Daphniphyllum oldhamii, and Lithocarpus glaber

Planted in 2009 after a clear-cut of the previous
commercial forests
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- Tree diversity effects on litter decomposition are mediated by

litterfall and microbial processes

Rémy Beugnon'-2, Nico Eisenhauer’-2, Helge Bruelheide3!, Andréa Davrinche3!, Jianqging Du#?®, Sylvia Haider3!, Georg
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covered by the microbial
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Tree species richness increased the amount of
litterfall and litter diversity

Tree species richness promoted decomposition via

biomass effect and diversification of the products

Litter decomposition was mostly carried out by
microbial communities in subtropical Chinese forests
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I s M E Communications

New Developments in Microbial Ecology

Tree diversity and soil chemical properties drive the linkages
between soil microbial community and ecosystem functioning

Rémy Beugnon®'2, Jianging Du3, Simone Cesarz'2, Stephanie D. Jurburg'2, Zhe Pang3, Bala Singavarapu'4°, Tesfaye
Wubet'4, Kai Xu¢36 Yanfen Wang?6:S & Nico Eisenhauer'2S
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In the Common Garden experiment

Litterbags installation
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Tree species richness increased soil
microbial biomass, bacterial diversity and
soil microbial respiration




Tree species richness increased soil
microbial biomass, bacterial diversity and
soil microbial respiration

Tree species richness effects on soil

microbial functions are mediated by soil
microbial biomass




Tree species richness increased soil
microbial biomass, bacterial diversity and
soil microbial respiration

Tree species richness effects on soil

microbial functions are mediated by soil
microbial biomass

Soil microbial communities and functions
highly depended on soil chemical
properties, especially, soil carbon content
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ARTICLE

- Abiotic and biotic drivers of scale-dependent tree trait effects
on soil microbial biomass and soil carbon concentration
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Littertraps installation
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Soil sampling **
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*: in collaboration with the TreeDi projects P1G, P2G, P5G
**: in collaboration with the TreeDi projects P7G and P8C
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SCALE-DEPENDENCGY OF TREE DIVERSITY
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ENVIRONMENTAL CONDITIONS MEDIATION
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Tree species richness increased tree productivity, microbial
biomass, soil carbon concentration

Soil carbon concentrations are driven at neighborhood level

Soil microbial biomass is driven at tree species pair level

Environmental conditions mediate tree species richness
effects on soil microbial biomass.




CONCLUSION AND PERSPECTIVES

TREE DIVERSITY
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Carbon cycle in subtropical forests are under microbial control

Tree diversity controls forest carbon cycle at every step (Huang etal,
2017, 2018, Xu et al. 2020)

Tree-tree interactions and tree spatial complementarity effects on

ecosystem functions are key to understand forest ecosystems (Trogisch et
al. 2021, Williams et al. 2017)

Small scale heterogeneity matters and it is induced by tree diversity

Tree diversity effects on ecosystem function are mediated by

environmental modifications (Cesarz et al. 2021, Joly et al. 2017, Gottschall et al.
2019)
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Need to better quantify decomposition dynamics:

‘ mineralization vs. stabilization in soils .




Need to better quantify decomposition dynamics:

mineralization vs. stabilization in soils .

Need to understand carbon dynamics in soll (kasner and Miltner 2018)
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INCREASING SPATIO-TEMPORAL RESOLUTIONS

Need for high spatio-temporal resolution of the measurements




Need for high-resolution and non-invasive measurements

Tree biomass
Structural complementarity
Leaf functional traits *

Littertraps installation
(1 m? area)

Soil sampling **
(0 - 10 cm depth)

200 ¢

*: in collaboration with the TreeDi project P1G, P2G, P5G
**: in collaboration with the TreeDi project P7G and P8C




Need for high-resolution and non-invasive measurements

Tree biomass
Structural complementarity
Leaf functional traits *

Littertraps installation
(1 m? area)

Soil sampling **
(0 - 10 cm depth)

200 ¢

*: in collaboration with the TreeDi project P1G, P2G, P5G
**: in collaboration with the TreeDi project P7G and P8C




Minirhizotron

pH & chemical sensors
EDAPHOLOG
Bait-lamina strips

Terrestrial Laser Scanning (P1G)

Thermal imagery

Remote sensing

Inventories

Leaf spectrometry (P2G)

Air quality sensors £

Camera trapping A @ ¢
Dummy caterpillars (P4G) e

AMMOD project ' BELOWGROUND

ABOVEGROUND
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' Beugnon et al. 2022
Monocultures Diverse forests Messier et al. 2019

Reduce urban

o> heat island effect
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Increase soil
carbon storage

The high potential of tree diversity to mitigate climate change and buffer its
effects on ecosystems




Beugnon et al. 2022

Need to get involved and build with policy makers to push forward Messier et l. 2019
biodiversity research and actions




Beugnon et al. 2022

Need to get involved and build with policy makers to push forward Messier et l. 2019
biodiversity research and actions

- Provide accurate and personalized
action (what should we plant where?)




Beugnon et al. 2022

Need to get involved and build with policy makers to push forward Messier et l. 2019
biodiversity research and actions

- Provide accurate and personalized
action (what should we plant where?)

- Open a new area for BEF research




Beugnon et al. 2022
Messier et al. 2019

Involve the public and young minds:

rontlers
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Soil biodiversity collection

Helen Phillips Malte Jochum
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